Gravity model of trade as a representative of the ensemble of maximally random networks

National Science Centre
Mariusz Karpiarz, Agata Fronczak, Piotr Fronczak
Faculty of Physics, Warsaw University of Technology
Physics of Complex Systems Division
http://research.karpiarz.net

Cooking and physics

The International Trade Network

Image source:
http://www.intennar.com/2012/06/11/ the-5-essential-ingredients-for-killer-s ales-and-marketing-content/

(ITN) - an example

Source: Bhattacharya K.; Mukherjee G.; Saramäki J.; Kaski K.; Manna S. S. The International Trade Network: weighted network analysis and modelling. J. Stat.
Mech., P02002, 2008.

Countries of ITN

Number of countries vs time.

The Missing

Called "gravity model" for its analogy with Newton's law of Universal Gravitation.

- Newton's Law of Universal Gravitation

$$
F_{i j}=G \frac{M_{i} M_{j}}{D_{i j}^{2}}
$$

F = attractive force; $\mathbf{M}=$ mass;
D = distance; $\mathbf{G}=$ gravitational constant

- Gravity model of trade

$$
w_{i j}=K \frac{x_{i} x_{j}}{r_{i j}^{i}}
$$

$\mathrm{w}_{\mathrm{ij}}=$ trade volume (export/import) from i to $\mathrm{j} ; \mathbf{x}=$ economic size (i.e. GDP); $\mathbf{r}=$ geographic distance; $\mathbf{K}=$ trade constant

Including gravity model

Real data to gravity model approximation (log-log scale),

Growth of alpha coefficient

Exponential random graphs

- Specify a set of networks $\mathcal{G}=\{G\}$,
- Decide what constraints should be imposed on the ensemble (e.g. properties of real network),
- Maximalize Gibbs-Shannon entropy:

$$
S=-\sum_{\wp \in G} P(G) \ln P(G)
$$

- P(G) will be probability distribution associated with given constraints.

Exponential random graphs

$$
P(G)=\frac{e^{-H(G)}}{Z}
$$

where $Z=\sum_{\wp \in G} e^{-H(G)}$
In general:

$$
H(G)=\sum_{i} \theta_{i} A_{i}(G)
$$

$\left\{A_{i}(G)\right\}$ - set of parameters of the ensemble
(i.e. graph observables, eg. structural properties)
$\left\{\theta_{i}\right\}$ - set of fields conjugated to these parameters

Let's stir it!

Image source: http://crockpot365.blogspot.com/2013/04/5-ingredient-homemade-beef-stew.html

Improved hamiltonian of ITN (with distances)

Ensemble of directed weighted networks, which is described by Hamiltonian (for "local trade" only):

$$
{ }_{\alpha} H(G)=\sum_{i} \sum_{j \neq i} \theta_{i j} w_{i j}
$$

where $\theta_{i j}=\frac{B}{T} \frac{r_{i j}^{\prime}}{X_{i} x_{j}}$ are Lagrange multipliers and
$w_{i j}$ - value of import/export between country i and j
T - total trade $T=\sum_{i} \sum_{j \neq i} w_{i j}$
$B=\sum_{i} \sum_{j \neq i} x_{i} x_{j} / r_{i j}^{\alpha}$
x_{i}, x_{j} - GDPs of countries i and j
$r_{i j}$ - distance between capital cities

Modelling of ITN (with distances) simulation

Bilateral trade flows vs the product of the trading countries' GDPs (imp

Our motivation

Analysis of changes of ITN year-by-year will fuel future works and may answer question: Is it possible to predict crysis that appears in ITN?

Fluctuation-response theory

From the first version of the model:
where

$$
\frac{d\left\langle v_{i j}\right\rangle}{\left\langle v_{i j}\right\rangle}=\frac{d \xi_{i}}{\xi_{i}}+\frac{d \xi_{j}}{\xi_{j}},
$$

$\left\langle v_{i j}\right\rangle=\left\langle w_{i j}\right\rangle / \sum_{i, j}\left\langle w_{i j}\right\rangle, \quad \xi_{i}=x_{i} / \sum_{i} \xi_{i}, \quad \xi_{j}=x_{j} / \sum_{j} \xi_{j}$

After adding distances:

$$
\frac{d\left\langle v_{i j}\right\rangle}{\left\langle v_{i j}\right\rangle}=\frac{d \xi_{i}}{\xi_{i}}+\frac{d \xi_{j}}{\xi_{j}}-\ln \left|\frac{r_{i j}}{R}\right| \cdot d \alpha,
$$

where

$$
R=\left[\sum_{i, j}\left(r_{i j}\left(\xi_{i} \xi_{j}\right)^{-\alpha}\right)\right]^{-1}
$$

Thank you for your attention!

References:

- A. Fronczak, P. Fronczak, Statistical mechanics of the international trade network, Phys. Rev. E 85, 056113 (2012)
- Newmann M.E.J., Barkema G.T., Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford (1999)
- M. A. Serrano, M. Boguñá, and A. Vespignani. Patterns of dominant flows in the world trade web, Journal of Economic Interaction and Coordination 2, 111-124 (2007)

